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1.0 OOJECTIVE:

The present research aims toward developing structural theo-

ries which can be used to diagnose the fracture damage of struc-

tures and to assess the reliability of the damaged structures.

Such theories, once verified experimentally, will be available

for design engineers to apply to the damageable structures. It

can also be the base for methodology which analytical and test-

ing engineers can develop to diagnose and assess the reliability

of the existing structures. It is assumed that the structures

under consideration may develop damage through extreme excita-

tions. Such damage can be defined as cracks occurred in the

structures, the amount of energy dissipation, the deformation or

any combination of the three. Therefore, it is important to

know when damage has occurred in a structure. When it has, it

is desirable to be able to locate it and estimate its extent.

Following the damage diagnosis, the principal components

for damage assessment are (1) to develop theories for the relia-

bility assessment of damageable structures and estimate the dam-

age in a structure, and (2) to develop and Improve mathematical

models which simulate the behavior of damageable structures.

These assessment theories will assist the engineers to achieve a

specified predictive accuracy in design, and to obtain a more

realistic assessment of the existing damageable structures.
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2.0 1W RCH PLNdI NlOa

The research effort, sponsored by the Air Force of Scienti-

4ic Research, made progress during the research years 1901-1984

toward developing a consistent structural theory in damage diag-

nosis and reliability assessment El through 16] (reference to

Section 10.0, publications by the principal investigator F. D.

Ju). The accomplishments are in phenomenal correlation, in

structural modeling and in quantitative diagnosis of fracture

damage. Deterministic analysis was the goal if possible. In

real life, the excitation and even the structural characteris-

tics can be random. Moreover, the measurements may be inadequa-

te, inaccurate or garbled with noise. The reliability assess-

ment will have to be probabilistic. With the establishment of a

practical theory in mind, a plan for three years research was

proposed in 1984 and approved beginning January 1, 1985.

2.1 Transmissibility Theory:

The transmissibility is defined as the ratio between the

response and the excitation at two different stations on a struc-

ture. Cracks soften the structure and thus cause a change in

transmissibility. The locations of transducers which measure

the transmissibilities as well as the locations of excitation

have been optimized for the necessary number of transducers and

for the maximum measurement in the change o4 transmissibility.

Damping property in the structure is included in the model. The

research would propose an optimal rule to locate the response

transducers and the number of measurements necessary in isola-

ting the location of a crack damage and in assessing the inten-

sity of the damage.
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2.2 ExpriMMO&iAl Verification of The Fracture Hinos _ Theory
and Thg-Modal Fregg.ency Theory in Damag. Diagnojs:rt

The analytical researches on the modal method% of dam~age
d1AUjnn,%i4 (hnth the modal frequency theory and the transmissibi-

lity theory) are based an the theoretical modeling of the crack

with a fracture hinge by the principal investigator (1,2,35,8999

113. No experiment was then available to establish and to veri-
fy its existence. This phase of research was considered moot

critical in the decision to continue the research. For the corn-

ple~tion o4 tho experimental research, then additinal sqlipiwnt

and material supports from the Mechanical Engineering Depart-

ment, UJNM and the Sandia National Laboratories are gratefully
acknowl edged.

2.3 Uncertainty Theorem:

The diagnostic theories are essentially inverse problems,

for which the solution Say not exist or multiple-valued. In the

direct problem, the structure and the damage,, the location and

the extent of fracture, are given. The pro- and the post-damage

structure can be analyzed for its corresponding frequency equa-

tions. The pre- and post-damage dynamic characteristics are

therefore, enumerable. Howenvr in the inverse problem, the dam-

age is not known a..rigrie The sufficiency Of Mmasurements is
always an uncertainty. Furthermore, as the damage-softened

structure tends to lower the modal frequencies, the neighboring

modal frequencies could very well experience a cross-over. In

the modal frequency theory* such cross-o~ver cannot be ascer-

tained. The types Of uncertainties have to be address in order

to caution the users of the theory and to suggest new theories

to improve the accuracy in using the theory.



2.4 Probabilisitic TheOry of Multiple Fracture Distribution:

The damage diagnosis for a single crack has been developed

successfully. H1owever, given an external random excitations the

cracking location certainly is not a fixed pattern. The random-

ness of the first cracking location say be correlated to the mat-

erial of theea structures and the characteristics of the

external excitation. If the excitation, such as earthquake, is

extreme, it is anticipated that multiple cracks will occur. The

occurrence and location of the second crack may be correlated to

the first crack, and so on. In the modal diagnostic theory,

because the a..prigmi knowtledge in the number of cracks is

lacking, the diagnosis is uncertain. Accordingly, it Is

necessary to develop the probability distribution of the

cracking location. The established probability distribution of

the cracking locations can help to identify multiple cracks at

least in the probabilistic sense.

2.5 Mldeling of Elastic-Plastic Iulti-Dearee-cf-Freedom

4MDF) System:

The research Is the completion of the study beginning with

the Single-Degree-of-freedom (SDF) system C4,5,791O,14,l4). The

result establishes a model for a generic class orf damaged struc-

tures. With such a nonlinear MDF stochastic model, the response

of a damaged structure subjected to arbitrary random oxcitation

can then be analyzed. The procedure of characterizing the sys-

tem and its governing stochastic differential equation results

in uncoupled differential equations of its mean response and Its

random component. The responses, their momnts and crosseoments

are solved for the statistical masures of the cumulative dwf or-

mation and the cumulative energy of dissipation as damage assess-

ment.

-4-



2.6 Reliability of Structures with Stiffness and Strength

When a structure of friction materials, souch as concrete,

is subjected to strong random excitation, the structure may

undergo inelastic deformations during certain cycles of loading

with associated cyclic degradation in stiffness and strength.

The prediction of reliability and assessment of damage depend

upon the proper modeling of such structures, taking into consi-

deration of the random characteristics of the material variables

as well as the excitation. It has been observed experimentally

in the structural degradation models that the rate of degrada-

tion may be related to the energy dissipation through the degra-

ding restoring hysteretic loop. The randomness of the stiffness

and strength degradation is estimated with the realization of

the energy dissipation. The reliability, which is defined by

the maximum deformation that never reaches an assumed and deter-

inistic critical level, can then be evaluated based on the es-

tablished theory. However, the statistical relation between the

random stiffness degradation and the energy dissipation is an

assumed probability density function since currently there is no

data available.
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3.0 TRANSMISSIBILITY THEDRYs

The transmissibility theory uses the dynamic characteris-

tics of the structural response*. Since the excitation may be

carried out at some specific excitation frequencies or some

known statistics of random excitations, the uncertainties aris-

ing through either insufficient measurements of modal frequen-

cies or frequency cross-overs can thus be avoided. The theory

is, therefore, most suitable for fracture diagnosis in complex

structures. The analytical model has the fracture characteris-

tics (e,) as parametric variable% as in the modal frequency

theory E189199301. Montag the general theory of circuit analogy

C2,3,153 is used. The vector of modal displacements can be de-

termined from given excitation F~t) a F aexp(iuwt) at a given

excitation station C151 as,

y =C F e . (3.1)

With the known set of shape functions, the displacement at any

point In the pro- or post-damage structure can be computed.

Appropriate locations of response transducers, placed an the

structure, will yield the record of transmissibility for frac-

ture diagnosis.

3.1 Transissibility Measurement:

Transmissibility (T) is dfined as the magnitude of the

ratio of acceleration at a response station on the structure to

the forte applied at the excitation station on the structure;

that is

T - lw/Fl, (3.2)

w&here the displacement 'w' may be complex to take into considera-

tion' of structural or viscous damping. To facilitate diagnosis,



the relative transmissibility (RT) is introduced as follows

T - T TR T T T J  (3.3)T T
0 0

sohere the subscripts c and a indicate with and without crack

respectively. When the structure is excited with the excitation

(amplitude, frequency and location) before and after a strong

damage-causing excitation, the relative transmissibility becomes

RT - (yc/Yo ) - 1 (3.4)

where yc and y 0 are the amplitudes at the same response station

before and after the damage. The relative transmissibility thus

ranges from -1 to 0. The limits occur at the post- and pre-dam-

age nodal points respectively for an undamped structure. Since

structural damping, however weak, always exists, it is possible

only to identify at a certain frequency a point of smallest amp-

litude of oscillation. A pseudo-node-point (PNP) thus defines a

point of locally minimum amplitude of lateral oscillation for a

specific frequency. The relative transmissibility is a function

of the excitation location and frequency, the location of the

response transducer and the fracture characteristics. The opti-

mal locations o4 excitation and response are decided by conve-

nience and maximum value of the relative transmissibility for as

small a crack as possible.

3.2 Resoonse Stations

The number of structural members to be instrumented for res-

ponse transducer is governed by the influence range, which is de-

fined by the proximity of a crack to a response station. A crack

at a significant distance from a transducer is said to be out-

side of the influence range of the response station. In a frame

structure, the frame cell, Joined directly to an Instrumented

member, is called a neighboring cell. Any crack, developed in a

-7-



neighboring cell, will affect significantly the relative trans-

missibility of the instrumented member. The influence range,

thereforew, should include only the neighboring cells. The mini-

mum number of transducers for a frame structure is accordingly

N - nm/2 for even nm

(nm+l)/2 for odd nm. (3.5)

Modal shape dictates the appropriate choice of transducer mem-

bers. For instance, at the fundamental frequency excitation,

there is no difference in choosing any wall (or column) for the

response station. Hence, Fig. 3.1 illustrates a three-story

four-span frame with possible locations of response transducers.

Figure 2 shows the responses measured by stations (T) on members

(16,21,22,24,27) respectively, for a crack on member 17. The

curves in Figure 3.2 also illustrates the insensitive range of

the crack position on member 17.

W3. L4 CAKON 7.1 02r* 4, M ON 13AT J5,IC7A.9B.-42S 2 -7 X% a A15, X21 a .4M X22 a M5. X24 A4, X27 r. _

3 b 9 12 IS

21 2223

l b 5 7 8 IS 1 1914

I: 4 7. 30 __. ..,.

Fig. 3.1 A 3-story,4-span Fig. 3.2 Relative transmissi-
frame, "T" denotes bility vs. crack loca-
response station tion (excitation on 13)

For maximum measures of relative transmissibility, it is

seen that the response station should be near the pseudo-node-

point. However, measurability must also be considered. In

m m mil I I I-8-I I



order to avoid misreading the measurement, it is recommended

that a pair of offset transducers be placed at each response

station.

3.3 Damaae Diaanosiss

The relative frequency measures at various response sta-

tions can be used through their influence ranges for the loca-

tion of the cracked member. For instance, when the response

station on member 21 records a relative transmissibility of

2.127. At such a high value, it can rest assured that the other

response stations will register relative transmissibility less

than 1. The cracked member is No. 21. However, if the value is

0.930, the cracked members could be No. 5, 8, 20, or 21. Member

5 could be ruled out since softening of that member would left-

shift the PNP to result in most likely negative values for the

relative transmissibility. For other mmbers, the records of

other response stations can help to identify the damage. For

instance, an equal reading of the relative transmissibility on

the response station of No. 22 implies symmetry. The cracked

member is then the column No. 8. If the relative transmissi-

bility on No. 22 response station is small, the crack will be on

the beam No. 20. Yet an increase of the reading on No. 22 res-

ponse station, the damaged member will again be the beam No. 21

itself with the crack at a less sensitive location. There is no

deterministic location of the cracked position possible. How-

ever, the diagnostic result could bring the region of damage

small enough to use some local diagnostic method. It was also

shown in Fig. 3.2 that there is a range of crack locations, in

which the crack damage does not produce sufficient dynamic

change at a specific excitation frequency to allow efficient

diagnosis. The effective ranges of a 3x4 frame structure are

listed in Table 3.1 for the fundamental frequency excitation.

-9-



TABLE 3.1-Sumwmary of the TABLE 3.2-Additional Diagnos-
Diagnosable Regions able Regions at the Third

______________Modal Frequency

a- is II romM sbf

z A? -. 7 t- .5J

.71j SA I I AAtIS
A, a*113: LS j .41. aSI

,a, _ _S __ I_ _

n.M SI JA

jo 1 140 MA 1 1
IAe M5A

As Le .5.JL

S 1Lft139

'A...- JW

The Ohole" can be filled with some higher frequency excitation.

The effective ranges of the wame frame from the third mode fre-

quency excitation are listed in Table 2. Of course,, the pseudo-
node-points of those instrumented members for the third mode are
different from those of the fundamental mode. Hkover, a similar
procedure may be taken for the placement of the corresponding

transducers.

The transmissibility theory for structural fracture diagno-

sis avoids the multiple frequency problem that occurs for both

of the last two uncertainties in the modal frequency theory to

be explained in the uncertainty theory, Art. 5.0. The theory
proposes the use of a single excitation frequency at both pro-

and post-damage measurement of responses. The method is limited

only by the number of transducer% to be placed on the structure.

-10-



With the knowledge of the response-station influence range, the

damaged member can be singled out. It is, however, to be pointed

out that the transmissibility theory does not in itself diagnose

the intensity of the fracture damage. Some combination usage of

local inspection technique or even the modal frequency theory

could be employed for local and intensity identification.

-11



4.0 EXPERIMENTAL DIAGNOSIS OF FRACTURE DGE

The investigation aims to verify experimentally that the

structural effect of a cracked section can be represented by an

equivalent spring-loaded hinge, and to demonstrate experimen-

tally the principle of fracture diagnosis in structures by the

modal frequency theory E1,113.

4.1 The Modal Freguency Theory:

The modal frequency theory uses the structural dynamic con-

cept that the modal frequencies change as a result of structural

softening from the presence of a set of cracks of intensity

(yk} lat locations, (ek). The fracture intensity is related

through the concept of fracture hinge to the hinge spring const-

ant x. The softening of the structure is related to the fracture

hinge spring constant and the flexibility of the structure. For

each crack, it is defined by a sensitivity number 4. For a beam

of rectangular cross-section

= j " - ) (X') 32 d X"  (4.1)
-0

where El is the flexural stiffness, b is the half-depth, ywa/b

defines the crack depth and f(.)is the dimensionless fracture

stress intensity factor. The direct and the inverse problems,

relating the relative modal frequency changes (R.) to the frac-

ture damage characteristics (ak' 4k are thus:

RI. -i (e k'4 k) (4.2)

(e,4)k , gk(Ri) (4.3)

where R -1-(;i/wi), W i and wi are the pre- and post-damage fre-

quencies of the i-th mode. For k-number of cracks, it is neces-

sary to have 2k number of measures of relative frequency changes

(R.). Because of the non-linear nature of the damage functions,

-12-



usually at least one additional measure of frequency change is

needed to determine one unique solution from the set of multiple

solutions.

4.2 Experiment on the Validity of "Fracture HingeO todelina

of a Cracked Section:

The experiment used twenty samples of aluminum cantilever

beam with milled slits to simulate cracks of controllable confi-

guration. There are five different single-crack locations along

the beam in the length modulated dimensionless locations (e) -

(0.01388, 0.250, 0.51388, 0.70833, 0.79166). Two crack depths

(10, 20) ils correspond to (VI -(0.21333, 0.42666), or 14) -

(0.006, 0.024). The elastic effect at the cantilever built-in

end, however small, is taken into consideration in the analyti-

cal model with an elastic torsional spring. The spring constant

is determined experimentally through comparison of the experimen-

tal frequencies and theoretical ones for the undamaged beam. The

elastic built-in end, therefore, can be assigned a sensitivity

number 4 . The cracked beam is therefore modeled by a double-0

hinge beam. Using Equation (4.2), the relative frequency chan-

ges can be plotted analytically as functions of the crack loca-

tion for the given crack geometry. Figures 4.1 and 4.2 show res-

pectively the Mode 1 and the "ode 2 freqaency changes comparing

the experimental measurements of relative frequency changes with

the theoretical curves for two given crack geometries. In the fi-

gures, the solid lines represents the theoretical relative modal

frequency variation, based on the average sensitivity number at

the built-in end. The dash lines and data points denote the act-

ual measured changes using individual built-in end sensitivity

numbers of the samples. The accuracy is better than 0.3% for the

beams with the slit closer to the built-in end. For beams with

the slit closer to the free end, the errors is as high as 0.7%.

-13-
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quency Variations quency Variation

4.3 Excerimental Diagnosis of Fracture UDamaae:

When the built-in end sensitivity numbers of the individual

sample beams are used in the double hinge model for the diagno-
sis of fracture damage, using the measured modal frequencies,

the locations Cal of the damage intensities, in terms of indivi-

dual fracture damage sensitivity numbers, are computed by the

computer program FISOL, developed for the diagnostic problem

E303, as listed in Table 4.1. The diagnostic solution can also

be expressed in the (e,) phase plane as shown typically in

Figures 4.3 through 4.7, representing five different fracture

positions. In ass five figure, solid circles denote curves for

the relative frequency changes of the first mode soled diamonds

those of the second mode and solid triangles those of the third

mode. The intersections of all three curves identify uniquely

the solutions of the damage characteristics pairs (e,4). The

diagnosed damage characteristics for the samples were compared
with the actual damage characteristics of Individual samples.

The errors in location close to the built-in end are less than

0.05%. Up to around 1% near the free end.

-14-



TABLE 4.1

I .i m a0.01 i 0.W02 0.006 3
2 0.261 6.290 0.9 0.0038 0.09 3.)

0060.-3 990W v.3 M W Wh.ot wmasfabi.
0 0.710 4.71133 0.6)3 0.0059 CON0 3.3

* 0.0i1" 0.013.. 0.00: 0.4241 0.026 0.62
7 0.147 0.230 0.3 0.023 0.024 0.2
O 0.512 0.5138 0.39 0.026 0.024 09 0.7194 0.71133 0.11 0.0228 0.926 5

10 0.7302 0.79167 1.)& 0.02.13 0.026 1.1
11 0.0136 6.0156 0.028 0.002 0.000 1.3
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13 Rmod-) Iwoquay oban. a wasitable
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The research uses the experimentally obtained pre- and post-

measures modal frequencies to provide a positive Identification

of the fracture damage C18,19,22,26,32]. The diagnostic accur-

acy for the two- hinge model (one hinge to simulate the elastic

built-in end and another to simulate the crack) is better than

1.0% in crack locations and around 4% in damage intensities.

For cracks at sections of low resisting moments, the frequency

measures will be at the level of noise, resulting in large err-

ors. Table 4.1 shows poor measurements of frequency variations

for Samples Nos. 5, 10 and 14. These samples do have slits near

the free end, where the moment is small. There are, however,

other insufficient measurements, for wshich the frequency varia-

tions are in the measurement error range. As in the design of

the specimens, the slits locations were designed to avoid the

theoretical inflection points. However, because of the compli-

ance of the built-in ends, slits at 0.250 and 0.51389 are in the

neighborhood of mode-2 and -3 inflection points respectively.

Yet, if the frequency variations in other modes are measurable,

insignificant change in a particular modal frequency is an indi-

cator that the crack may occur near that modal inflection point;

while the other modal frequency variations will serve to deter-

mine the damage intensity.
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5.0 UNCERTAINTY THEORY:

In the expression of the damage function, equation (4.3).

it is presumed that, for k-number of cracks, (2k+1) measures of

frequency changes are available for diagnosing the cracks.

However, the number of cracks is generally not known a priori.

Furthermore, there may not be (2k+1) measures of frequency

changes available. Uncertainties thus result associated

essentially with a damage configuration with multiple cracks.

The lack of a priori knowledge in excitation could also lead to

misinformation in modal damage, leading toward large errors in

diagnosis. The investigation addresses these uncertainties.

5.1 Freouency Cross-Over:

The uncertainty of frequency cross-over can be illustrated

with two modal frequencies, wi and wj (without loss of genrality

let W i<W) at undamaged state. After cracking occurs, the new

modal frequencies are correspondingly Z i and ZJ. If the crack

occurs near the inflection point of the i-th modal shape, but if

the location happens to be near the maximum moment section of

the J-th modal shape, &i may not differ too much form w. It is

conceivable that, for the new modal frequencies, we may record

Z .<W. * In that case, without the knowledg', of the actual damage

configuration, the diagnostic assemblage of frequencies may well
confuse w to be the new frequency of the i-th mode and i to be

the new frequency of the J-th mode. The phenomenon is a frequen-

cy cross-over, which would commonly occur for adjacent modal fre-

quencies of close magnitudes. The diagnostic result may be dis-

astrous. However, with the use of transmissibility theory, for

which the structure can be excited at chosen frequencies, the

problem of frequency cross-over can be alleviated.
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5.2 Close-Packed Multicle Crackss

The investigation indicated that the first few characteris-

tic values of a beam with closely spaced multiple cracks are, in

general close to those of a beam with an equivalent single crack

whose sensitivity number is approximately equal to the sum of

the individual sensitivity numbers of the cracks on the original

beam. Furthermore, the location of the equivalent crack is gen-

erally within the region where the group of cracks is located.

Hence, equivalence of closely spaced cracks to a single crack

Implies that, in the process of damage diagnosis, it is impossi-

ble to distinguish between closely spaced multiple cracks and a

single crack.19,26,303 The limit spacing for a cantilever beam

is shown in Fig. 5.1.

10 *vi u

* * .174 for All CracksAcancy in Spacing 10

at a .001
*1 0.100

s -

tt

2 2 4 6 4 7
imber of Cracks. k

Fig. 5.1 Limit of Spacing for Multiple Cracks
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5.3 Untcertai ntyv from I nad&auptg Ifasuretment u

The relative frequency changes at lowser msodos, for a struc-

ture with multiple cracks, fay be the same or within the aasure-
ment tolerance of & structure with fewer cracks. The clarifica-

tion con only be brought about with moe measurements of fre-
quency changes. Akgun and Ju E269303 Illustrated with the com-
parison o4 a single major crack against a group of ten uniformly
Spaced minor cracks- The first two mbodes yield the same frequen-
cy change. Even the third mbode shows only a difference of 10749
wh~ich is, for all practical purposes, unmeoasurable.

For illustration, the following relative frequency changes
are assumed to have been computed from the measured frequencies
of a damaged cantilever beams R 1 a.05799 R 2 MOMMI R3 -. 0591. It
is to be determined whiether the a-ma mainly consists of one
crack. The (actual) characteristic values of a damaged beam are

computed from

a c isu

where (j) () are the characteristic values of the correspondingu
undamaged beam, the first three of which for a cantilever are

(1.8751, 4.6941, 7.8548). From Equation (5.1, the third modal

characteristic value of the damaged cantilever beam would be
(3 -7.6192. The first two actual characteristic values yield

one solution for a single crack located at *oq .372 with 4 eq
0.128 (corresponding to relative crack depth of .#-.55 for a slen-
derness ratio of b/L - .05). These equivalent values are then
used in Equation (4.2) with kaI to determine the third character

istic value due to the equivalent crack. The computation thus
yield 0 (3) -n7.6176. Then, the error iseq

error m(0 3 - Is (3 /s 3 .0002.ac eq ac

It is quite reasonable to accept a solution, whose error is less
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than 0.1%. Iowever, the given Rj data wre actually generated
4rom a problem with ten cracks of equal intensity E4 was taken

to be .01 (i.e., -#-.2) #or all the cracks3 located such that

ft 1.0019 air.094 4or I - 2,3,..,10, where e I de4fines the spacing
between cracks. Thus, in this case, even though the actual and(3)
equivalent ) values match closely, a firm diagnosis cannot be
reached.
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6.0 PROBABILISTIC DISTRIBUTION OF IULTIPLE CRACKS IN

STRUCTURES

The investigation considers the development of the probabi-

listic methodology for the prediction of multiple cracks distri-

bution in a structure of beam elements associated with indivi-

dual modal oscillations. The probabilistic measure of crack dis-

tribution can then be used for the probabilistic diagnosis of

crack damage (depth) and its location (spacing) under random

loading and resolve some of the intrinsic uncertainties in the

modal theories of fracture diagnosis. The structural system con-

siders some randomness of material strength. The arresting frac-

ture toughness is characterized as a random variable with the

appropriate probability distribution. The application of LEFM

in connection with the stress relief effect due to the presence

of crack suggests a means of predicting depth and spacing of ten-

sion cracks at a given random modal oscillation. The resulting

redistributed random bending stress (moment) distribution is a

measure to compute the subsequent crack state. With postulation

that secondary cracking is dominantly affected by its immediate-

ly preceding crack, the process of the successive cracking can

be treated as a Markov process. The analyses are performed,

under these probabilistic assumptions, for the 4irst few rep-

resentative normal modes of interest. The probability distri-

bution of the overall structural system therefore is obtained

depending on weight distribution of modes for a particular

excitation spectrum E283.

6.1 Crack DQti:

To estimate the depth of tension edge cracks in a beam, a

fundamental fracture mechanics theory is required to assess the

entire problem involved in crack initiation, propagation, and
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arresting. For simplicity in the present study, only model I

crack is considered to initiate if the bending stress at the

extreme surface exceeds the cracking strength, ar. The crack

propagates when the crack edge intensity factor KI reaches a

critical value Kic, fracture toughness. For crack arresting,

we will assume that a crack will continue to propagate as long

as K remains greater than some critical value K denoted as

the arresting fracture toughness. Kic may be obtained via well-

defined test procedures. However, there is no test data avail-

able for K I. Since both values of KIc and K are expected to

be of the same order o4 magnitude, it does not seem unreasonable

to treat Kio as a uniform random variable in (OKIc).

So long as the rate of crack growth does not approach the

speed of propagation of an elastic disturbance, the computed K I

on a basis of static elastic theory should be a good approxima-

tion to describe the arresting process. Analytical solutions for

KI only exist for selected simple cases. The solution of an edge

crack in half-plane is approximately applied to our beam model

with edge crack length d in the presence of the bending stress

field. d2

KI . J 0 1.124 (d2 -y2 ) ab( 1
- 2 y /t)dy (6.1)

where ab is the outer fibre bending stress. K I is readily ob-

tained by integration:

c(K I/a b ) - (w/4) - - f( 0), (6.2)

*shere c a Cv71t14.48 n1 - d/t, and t is the depth of the beam.

The variation of K I with crack depth parameter n is schema-

tically plotted in Figure 6.1, wherein f(1) assumes its maximum

value fSax at Iaax" As the figures shows, if c(KI/b)>fmaxw no

crack will occur. Thus, the cracking strength ar can be related

to KIc by applying (6.2) at I'maxI

c(K c /a) a" (6.3)
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00 .2 0.4 0.6 0.3 1.0

Fig. 6.1 Variation of K with Crack Length

which yields ar - cK Ic /max. Equivalently, it simply says that

crack occurs if ab>a r s Also shown in the same figure, if cKlo/b

is less than f SA there are two positive real value solutions

i and with q <7o. n€ is interpreted as the normalized cri-

tical crack length for unstable cracking to propagate and 7) way

be treated as the final crack length being arrested. Since K 1 0

is assumed to vary within (O,KIc)9 the prediction of n? needs the

random variable analysis. The normalized mean crack depth E~d/t]

can be computed ast

E ~d/t3 rO.57 (/ 3 )(a b/ar)v b<r (6.4)

S[O.52-0.15cos (54/3)-O.5cosf-O.75cos (4/3) 2 (u13)cosS
ab >ar

where cosS -. rla b .

6.2 Crack Spacing and Stress Reliefz

The quantity of principal importance to the problem of

crack spacing is the stress perturbation in the plane In which

cracks originate, usually the free surface. The elastic stress

perturbation due to the presence of crack in the semi-infinite

medium, used with the modified Griffith theory of macroscopic

fracture, suggests a means of predicting spacing of tension

cracks in terms of stress field and measurable properties. Since

the modal theories of fracture diagnosis are non-destructive and
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use low level oscillation, the measurements are carried out in

the elastic range of the structure, within which the characteri-

zation of the fracture damage can be defined with LEFM. Figure

6.2 illustrates the normalized surface tangential stress relief.

gs(C) and g,(C)g respectively, for step and linear distribution

of normal stresses on the crack surface. The non-dimensional

variable I denotes the distance measure from the crack.

stopma

II

Fig.6.2 Normalized Edge Surface Bending Stress Relief

For a beam with crack depth d and the linear initial bend-

ing stress distribution across the thickness tj the bending

stress relief g(f) can be computed from the combination of g s()

and g ( ) within the linear elastic range.

g(r) - g (M) - 2(d/t) gg(f). (6.5)

6.3 The Modal Cracking Probability of Beam with Uniformly-

Distributed Crackino Strenoth Subjected to Random

A Sinusoidal Loadina:

One commonly used method of numerical simulation of earth-

quakes is to expand a periodic function into a series of sinu-

soidal waves.
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n
6(t) m AI. sin (wit*4), (6.6)

i-1
where Ai is the amplitude, w i is the excitation frequency, and

4 is the phase angle, respectively, of the i-th contributing

sinusoid. Introducing randomness to 419 a wide band random ex-

citation can be generated. In the present paper, a simple sinu-
soidal ground motion 6(t) - A sin(wt) is taken with A as random
variable.

For clarity convenience, the notation 0(j,k) beam' is used

to identify the state of a beam being in i-th mode and possess-

ing k numbers of cracks. The associated quantities are then exp-

ressed by subscript state parameter (j,k). Thus, for a general

N-crack beam system (dJk, iek) is the fracture damage character-

istic pair denoting the k-th crack's depth and its location at

J-th mode.

The spacing % k is defined as the location difference bet-

ween two sequential cracks, ejk - ejk_ 1 . The expression for

the random edge surface stress Sjk(Cjt), its associated positive

quantity Xjk(ft), and its related positive random quantity

Yjk(ft) beyond the random crack strength R are:

Sjk(t) - A sin(ht)Vjk(C)9 (6.7)

Xjk(fit) - Sjk(Eot) HCSjk(Clt)Zl (6.8)

and
YJk(tt) - k HSJk(fot)-R ,9 (6.9)

where A and R are uniformly distributed in, (O0nar) and (OlOr)

respectively, H is the Heavyside function, and Vjk(r) is the

corresponding modal surface stress shape of the (Jsk) beam.
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6.4 Solution frocedure:

The solution of the mean time cycle of cracking, the proba-

bility of cracking, and the axial probability distribution of

cracking can be formalized with procedure steps, Steps 1-3.

Steps 4 and 5 compute the mean spacing between sequential cracks

and the moan depth.

Step (1) For (j,k) beam with damage pair (d jk"e.k ), update the

modal bending shape function V JkCM and obtain S jk( rt)s X jk (rt)

and Y Jk Qt) from Equations (6.7-6.9).

Stop (2) Under assumption 2, the mean time cycle m for the suc-

ceeding cracking and its cracking probability F.jk~ (C maxmT) can

be evaluated in conjunction with X1. (C ma t):

I jk (Cmax ,t) - PrES.j (C ma t)>R3

+ PrCA sin(wut)V ik (f ma =)R

I - 1/(n %in(&.t)Vjk(C a)9 1<np k(rx )sin(wt)

0 otherwise (6.11)

In = expE -JO jk(C maxT)dT3I

T
M( - expE- I jk (C max 9r)dT3)9 (6.12)

and
F j~k+l(C maxmT)

1-expE-J0)Lik (C maxt)dt3!(613

Step (3) With the evaluation of < EY jk (19t)3 >9 the axial pro-

bability density function p j~k+lC9~t can be computed:

ELYktt) C iat)jk()b 2 2n sin(wt) J
(6. 14)
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<ECY, jk €r,t)3> - o EE J't,.k (19T,) d', -
TT

. I JEYjk(f9) di, (6.15)

and
<EY ik(CmT)3>

P. (mT) E[ (CmT)]> dr

Jjk J
JE[YJk ( ,T)3>

" , ( 6 1 6 )

J!<E[Y d(T) 3> dtejk J

•wher e o jk <<.

Step (4) Computations for mean spacing s.jk 1 and crack location

jjk+l are:

1
s J~kl j kIpjvk+l(Cj&T)dC (6.17)

and e m S
ikkan ejk+1 j,k+l e jk"

Steo (5) For the (k+l)-th crack produced at e jkl, the temporal

mean stress <E[Xjk (e j ,k+mT)3> up to time sT is:

<E[Xjk (ejk+lm T )3> -
* T

I ... L ECX (e ,r) dT
mT J0 jk j,k+1

IT

Jo E XJk (eJ,k ,T) dT. (6.18)

Replacing ab in Equation (6.4) by <ECXjk (ej k+I,mT)3> yields

depth dj,k+ 1. This new damage pair (d jk+1, aj,k+l ) defines a

new crack state, namely, (Jk+1) beam. The loop completes and

returns to step (1).
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7.0 MODELING OF ELASTIC-PLASTIC STRUCTURES:

This investigation established a procedure for the probabi-

listic characterization of a damaged structures which is modeled

as a nonlinear elastic-plastic MDF system. The random excitation

may be either stationary or nonstationary. The stiffness matrix

is nonlinear to simulate the elastoplastic behavior of a damaged

structure. The stiffness matrix is also random to characterize

the material and environmental variations. The governing stoch-

astic differential equation is resolved into one for the mean

response and another for its random component. Responses, their

statistical moments and cross-moments are solved with discrete-

time recurrence formulations. The probability of structural

damage or the structural reliability, is then estimated by the

upper bound of the cumulative energy dissipation. The formalism

of approach in formulating the solutions for a generic class of

MDF nonlinear problems with Prandt-Reuss material permits ready

adaptation to REM analysis. E17,313

7.1 Formulation:

The governing differential equation of motion for a

non-linear structural framework, modeled as a discrete MDF

system, can be written as

go 0

mz + cz + k(z) z = f (7.1)

where m, c, k(z) are the NxN mass, damping, and stiffness mat-

rices, 4 is the external load vector; a,zz are the displacement,

velocity, and acceleration vectors of the system. In this inves-

tigation m,c are assumed to be deterministic and constant. The

stiffness is represented by a matrix of random variable which may

correlate to the response z(t). The quantities 4, k{z), and z

can be resolved as follows:
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4 -+F , k(z) (p)+K, z - C+Z, (7.2)

where i, I and C are mean values that

E~f3 = , Elk(z)] - X(p), E[z3 - I. (7.3)

It is noted that, (7.2), the nonlinear properties of stiffness

are assumed to be reflected by its mean component. The random-

ness of stiffness is represented by K which is a matrix of random

variables. F is a non-stationary band-limited white noise. Also

it is noted that the random quantities, F, K and Z introduced in

(7.2) are all zero-mean. Substitution of (7.2) into (7.1) yields

.. *, . S

m(p+Z) + c(g&+Z) + EX(g)+K](i+Z) - p+F. (7.4)

Taking expectation on both sides of the above equation results in

the mean values equation,

ig + cg + X(p)p = V-E~kz3. (7.5)

The difference of (7.5) and (7.4) yields the equation for the

random component.

S. a

eZ + cZ + X(A)Z - F + E[KZ] - KZ - Kp. (7.6)

In (7.5) and (7.6), KZ and E[KZ] being the product of two random

quantities, are higher order terms. By neglecting these terms,

(7.5) and (/.6) are reduced to the following expressions&

ag+ cg + R(p) 9, (7.7)

mZ + cZ 4 X(#)Z F - Kg. (7.8)
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The omission of the higher order terms are postulated for the MDF

systems. For SDF systems, the errors in response and its statis-

tics resulting from omission of the higher order terms is refer-

red to E17,313.

7.2 Nonlinear Model:

The investigation treated a generic class of elasto-plastic

material that satisfies the Prandtl-Reuss relationship. For a

beam with symmetric cross section, the moment for any section at

location x measured longitudinally along the beam, at pure

'bending, is
]c

M(x) - Ely" - E J a (xh) hw(h) dh, (7.9)
-c

where E is the Young's modulus, I is the moment of inertia of the

cross section, y" is the second derivative of the deflection with

* respect to the coordinate x, c is the half depth of the symmetric

cross section, a (xh) is the permanent set at locations x and

h. All external load, without loss of generality, are resolved

at nodal point. Hence

EIy' - E J du a (ulh)hw(h)dh + 2 Cx2 + C2 x + C3 , (7.10)
0 c

Ely - Ejd du cuh)hw(h)dh + x 1 2  C4

(7.11)

The constants Ci, i n l,...,4 are prescribed from boundary condi-

tions. The axial strain can be evaluated with an analogous ap-

proach.

a(x) EP + E a (.h) w(h) dh], (7.12)
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where P is the axial force, L is the length o4 the beam, A is the

cross-sectional area. The permanent sets are yet to be deter-

mined. For that purpose an iteration scheme is developed using a

finite difference method that the displacement at time t,+ can

be evaluated from (7.7) by using the central difference method;

M A 1 E25)L + %p + at2[Ej-iRij)]9 (7.13)
j+11 J )j1

where, A1 - ct ., and A. - cat- . (7.14)
1 2 2

It is assumed that the system starts at rest.

In the iteration scheme, the neutral axis does not change

throughout the computation. Because of this assumption, the

permanent set will first converge, then alternate between two

values. In such cases an approximation for the permanent sets

can be established by averaging the two values.

Since (7.8) characterizes the random component of the struc-

tural response, the displacement response at time tj+ 1 can be

solved by using central difference approximation. Namely,

Z MA 1 1(A + A3Zj_ + at 2 F - At 2 K , (7.15)Zj+l j~

where A 1 and A. are given by (7.14) and

- 2m - At 2 ML(j5 , (7.16)

in which X(pj) is the equivalent stiffness matrix at time tj; the

s-th column in (g,) is by definition,

Is (j) - " (7.17)

T
The response covariance matrix ErZ Z T I can then be
established.
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7.2 Damaae Dianosis:

Structural damage resulting from low-cycle loading may use

the cumulative cycle permanent set of the cyclic energy

dissipation% if it is postulated that the cumulative damage is

related to the energy dissipation in the system. In a small

element of a beam, the energy dissipated in the system due to

material nonlinearity can be expressed as

E - AV E J Ca(t) a e(t)3 da. (7.19)

The total energy dissipation for a beam due to material nonlinear-

ity is therefore obtained by summing up all the small elements,

resulting in

Ev AV s

= AV E EU[(jat)-a (jAt)3]s(<j+1>At)-s(jat)2 (7.19)
AXV

where E is the total energy dissipated in a beam. It is noted

that a(t), aa(t) are obtained from (7.7) which represents the

mean of the response. In this sense, the energy dissipation cal-

culated by (7.19) can be used to represent the mean value of the

energy dissipation. The result is used to predict an upper bound

of the energy dissipation measure, considering Mlarkov inequality,

Pr(x>d} L dZ (7.20)

where d is a positive constant. If total energy dissipation is a

maximum damage criterion, the probability of damage is therefore

defined by (7.20) with d representing the material constant of

permissible total energy dissipation. Numerical examples are

referred to E17,313.
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6.0 RELIABILITY OF 91 CTLRS WITH STIFFNESS AND 8TRENGTH

DEGRADAT I ON &

When a structure of frictional materials, such as reinforced

concrete, is subjected to strong random excitations, the struc-

ture may undergo inelastic deformations during certain cycles of

loading, with associated cyclic degradation in stiffness or

strength, or both. The exact nature of system degradation is a

function of the structural materials and the configuration, and

may vary considerably from structure to structure. Basically,

the deteriorated phenomenon is due to the extension of crack in

the concrete, bond deterioration, bar slippage, shear deforma-

tion, and inelastic deformation of reinforcement. The most im-

portant factor is the opening and closing of the crack in the

structure that alternate between compression and tension during

the response cycle. Thus, the opening and closing of these

cracks may eventually lead to a deteriorated stiffness and

strength. As a consequence, energy is dissipated through the

degradated hysteresis. It has been experimentally verified by Ju

et al E143 that the rate of degradation is related to the energy

dissipation through the degrading restoring hysteretic loop.

Quite frequently, the excitations of the structural system

are not predictable. Examples of such loading sources are earth-

quake, wind, aerodynamic loads, etc. Under these types of excita-

tions, the structural response apparently behaves randomly. The

random characteristics of the loading sources together with the

random system degradation lead to the desire of a coherent damage

model that can be used to assess the reliability of such a sys-

tem. In practice, the randomness of the excitation, together

with the randomness of the system degradation, will lead to the

randomness of the deteriorated restoring force to be a random

process, which we refer as structural random noise. The predic-

tion of reliability and assessment of damage depend upon the
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proper modeling of such structures, taking into consideration the

random characteristics of the materials as well as the excita-

tions. Therefore, the present investigation establishes such a

model that can be used to predict the liability of a generic

nonlinear structural system, especially for those that show

stiffness and strength degradation.

8.1 Formulation:

The nonlinear system to be considered herein is a single-

degree-o4-freedom (SDF) system, with the governing differential

equation of motion

m z 4 c z + R(z) - f(t), (8.1)

where mc are the mass and damping, respectively; f(t) is the ex-

ternal random excitation, z9 ;, z are the displacement, velocity

and acceleration responses of the structural system, respective-

ly. R(z) is the system hysteretic restoring force. In this inves-

tigation, m, c are assumed to be deterministic and constant. Fur-

ther, it is assumed that f(t) is a band limited zero-mean station

ary white noise with constant power spectral density qff namely,

Elf (t)f (s) 3- 9ffI(t-0). (8.2)

The behavior of the system hysteretic restoring force fr a sys-

tem that shows stiffness and strength degradation has been stud-

ied extensively. Among those system-degradation hysteretic mo-

dels, the 0-hysteresis can reproduce the behavior of system deg-

radation in a simple and efficient way. Hence, it is adopted

here in the present study to describe the deterministic behavior

of system degradation. The rules of 0-hysteresis are summarized

in Figure 8.1, in which kI is the initial stiffness. The unload-

ing stiffness k3 is determined by:

k3 =k Izy/Zma x  V - 0.4. (8.3)
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1i 4

Fig. 8.1 The G-hysteresis

It is noted that the parameters ki, i-19...5 in Figure 8.1 define

the rules of loading, unloading and loading reversal. On a simp-

ler level, all these parameters can be assumed that they do not

manifest any randomness. However, on a more realistic level, all

these parameters cannot accurately describe the original behavior

of system degradation. Moreover, due to the material randomness,

even two identical samples cannot yield the same hysteretic

curve. Therefore, the error that between real behavior o system

degradation and the model we developed, together with the random

characteristics of the material, lead us to the realization that

the hysteretic restoring force must behave randomly. Further, in

view of the fact that the restoring force is a function of the

random displacement response, the randomness of the hysteretic

restoring force must be time dependent. Without loss of

generality, the hysteretic restoring force can be rewritten as

R R(a ,...,a 6 )  (8.4)

where a. k , k 1 I ... ,5, a laz. By using the Taylor's expan-

sion, R can be expanded about the means of its underlying random

parameters to obtain
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6
R - R(A 1 +..., 6 ) i (a i -i) .go

1

6 6
+ E (ai a ) +....-

2t=1 j~l I (j-J/ ~ igo j

SR(pl1 9 ... p6 ) + N(EI,...,E 6 )l (8.5)

where -i1 EoiJ 39 f - i-l,...6. It is noted that the deri-

vatives in the above equation are evaluated at Ail i=l1,...6. The

Well,... f6 ) is the generalized structural noise. The structural

noise arises from the uncertainty of the materials, the errors in

the model and the randomness of the response. Apparently, the

structural noise is a wide band random process. A typical such

structural noise is shown in Figure 8.2. According to E173, the

structural noise can be approximately assumed to be zero-mean

with less than 1 percent error. Moreover, from Figure 8.2 it can

be seen that the structural noise indeed shows the property of

zero-mean. Substitution of Equation (8.5) into (8.1) yields

6640.0
(29500)

3C

(130 0.) O. 0.6 1.2 1.e 2.4 3.0
TNE (SEC)

Fig. 8.2 A Typical Example of Structural Noise
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sz + cz + R(z) 4 N(t) 4(t). (8.6)

The structural noise N(t) is introduced in the above equation and

is presented as a function of time for simplicity. In order to

specify the characteristics of a random process, the probability

structure of such a random process must be given. Namely, the pro-

bability density functions of the random process up to infinite

order must be known. In practice, this is impossible. However,

the difficulty is alleviated by adding more restriction when eva-

luating the structural noise. In the present investigation, the

restriction is made by adding the energy dissipation as a given

condition. In such a situation, the autocorrelation function of

the structural noise can be evaluated. According to the above

statements, if the wide band random noise assumption is made, the

autocorrelation function can be written as

E[N(t)N(t~s) lEd, z(t)2" S(t)6(s).

It is noted that S(t) is time dependent which reflects the nonsta-

tionary characteristics of N(t).

Furthermore, if the input excitation f(t) is assumed to a

band-limited white noise, it becomes necessary that the theory of

Plarkov process needs to be used here. In view of this, the tran-

sition probability density function is defined as

P - P(tte,t+At9y) - P(z(t+At)Iyjz(t)aC, Ed). (8.8)

Equation (6) implies that the random process at time t+ t is eva-

luated with the conditions that not only z(t)-C has to be given,

but also the energy dissipation sequence Ed must be realized.

The energy dissipation sequence Ed, therefore, may be viewed as

the random environment. Given different environments, the transi-

tion probability that governs the random evolution varies.Similar

-38-



to (6.8), the first and second moment% of the random increments

that are associated with z(t) can be defined as

~AMt li -rn ECAz z(t)-m, E2 (8.At-60 at I % d'

a 2(t) "a -1EE z(t)mC, Ed3. (.0At4O0 at d

The Kolmogorov backward equation still holds if the deriva-

tions are followed. The 'reason is that the given random environ-

ments didn't change the characteristics of jI(t) , ct), and P.
Hence, from (8.8 - 9.10), the Kolmogorov backward equation is

aPt'Ct-V a-5LC~t)V * 2ip(t.Cet.V) (.1
aPt*ctv ac ~ 2 aca

where t' - t+At, with initial condition

P~t,Cvt',y) - (C-y). (8.12)

It is reasonable to assume that P is stationary within time
[tlt'3 if at is small. Based upon this assumption, (8.11 becomes

aP(t.r~t'.v) .at P~t.r~t-.v) +a2 (t p(t.C t* .v) ( 3
at 1 t)ac 2 c

The evaluation of pL(t) and a 2 Mare discussed briefly as

follows. Let Az-Au4-AZ where u-Ez3. When taking conditional

expectation on Az, from Equation (8.6) it is easy to show that

Act) = u~t) + 1EECJ exp(--,'Lt--r))-f~r)dr3 a0, (6.14)

since f(t) is zerom-mean, f(t) and E d are independent. Similarly,

from Equation (8.8)

2 m2
1 -i L ELc-dr d h(r)h(V)W(t'-)(t-) z(t)-CE )3
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in which vr(t)-f(t)-N(t)q h(t)-I-exp(-ct/m)j where uses have been

made the facts that AumOCAt) and f(t) Is zero-swan.

Equation (9.15) can be reduced further by noting the fact

that EEN(t)f(t)]-O since f(t) is white noise E173. The Integra-

tion can be carried out to result in E213

2 -2 2
c [fpff+S (t) 3 C1-exp (-ct /m)J 3 (9.16)

It is noted that a 2 (t) is also a random variable at time t since

it contains SMt. Also a 2(M approaches to c -2CIE94S(t)3 as t-m.

The solution of Equation (8.13) can be solved using the Fourier

transform if p(t) and a (t) are given by (8.14 and 9.15), respec-
tively. The solution is Gaussian distribution with parameters C

and V; namely,

P(t,Cgt'vyS~t)) - P~z(t)ylIz(t)hCj E )3

IS exp(- 1L(y-C)/JV) (9.17)

where

V=c Eff CSt](X 1exp- m 2c p-2L13

It is noted that the transition probability given by (9.17) con-

tains a random variable. This means that the characteristics of

the transition probability Is random and its value depends upon

the given condition of the energy dissipation. This satisfies

the original assumption which states that given different environ-

ments, the transition probability that governs the random evolu-

tion varies. The transition probability that contains random

variables are called ttarkov chain in random environment (PCRE).

8.2 Discrete Formulation%

The transition probability established above Is based on the

assumption that z(t) is continuous. However, In digital compu-

tation, a discretized form is necessary. Also, the nonlinear
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characteristics of R(z) and the nonstationary property of N(t)

make the transition probability solved above only valid within

small time intervals. Hence, these conditions necessitate the

use of discretized form of (8.17). If discrete form is used,

Equation (8.17) becomes

(P(n,Cn+l,yS )) P n

- (p(z n+luyl~ zmnzn ,...,za, Ed) (8.18)

It is noted that z,.. 9.zn1 l are also put into the given condi-

tion since the future may not be independent of the past for this

case. The n-step transition probability is given by (8.20).

(n) n
P CP(Z +lvjz 9 Ed)) " Po TPig (8.19)

Jol

where P., J=1,..vn are the transition probability at time step i,

and P is the initial probability distribution of z a The proof

of (8.19) is referred to E213.

8.3 Aolication:

There are two cases that can be considered here. The first

case is that each of the S is independent. For such a case, then

structural response is then a random process moving in the aver-

age environment. The mean of the n-step transition probability,

in this case, is obtained by taking expectation on both sides of

(8.19) yielding

(n) n
E[P 3 - E[P 0 ITE[PJ,3 (8.20)

j=1

where E[PJ3 is the mean transition probability at time J. This is

a special case of ICME. It other words, z(t) is a nonstationary

Markov chain with one step transition probability ECP 1.
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It is very Interesting to note that ECP(n,C,n+l~yS n)3 is

still a valid representation of a probability density function,

wshere P~n,C,n+l,y,S n)3 is given by (9.16). The reason can be seen

by noting that

EJ P(nC,n+l,y,S ) dy3 JyEP~nlrn~lgyvSn)3dy m 1.
n jy (9.21)

By using the definition of the expectation, (8.21) can be re-
woritten as

jdy jyP(n,r,n.1,y,S ) P(S n) dSn

- JSnPS )dSnfy P(njrjn+lY'$Sn) dy - 1, (9.22)

wshere P(S n) is the probability dfensity function of 6n at time
step n. Equation (6.22) can be used as a tool for the numerical

computation and will be discussed in Section 8.2.

The second case is that Sn , n m 1,2,.,, are also harkovian.

In such a cases the one step transition probability wahich is

given by (9.9). It can be rewritten by using the law of total

probab iIi ty.

- EE 0(j9jj+jyS j) PSjj.)P(So) -
S .6 0

- E E ..E P5 ujC~i+19y9S j PS JS. 1 1)..PSjS 0)P(S0 ), (8.23)
69 S S

where S.j in P (j9C~j+l1y1S.) is a given, deterministic value. Xf

we let

(P(Si jSi )i - r1 , 1-19960. (9.24)

and
(p(s0) r0 as9.25)

then

P - (P(jC~i+ljyS.) P 'JC93+19YIPS j) i r, (9.26)
i-1 L

The n-step transition probability then can be evaluated based

* upon (8.19). Numerical examples are referred to E213.
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9.0 CHARACTERIZATION OF DAMAGE USING THE CONCEPT OF 8TRUCTURAL

POWER

This investigation aims to establish & theory, using the

structural power to characterize the nonlinear structures. Since

a damaged structure displays uniquely the nonlinear character-

istics the established theory shall be employed to assess and to

diagnose the damaged structure and to describe the extent of

damage from the standpoint of energy criterion. In additions the

established structural power can also be a material character-

istic for nonlinear structures. Such characteristic is important

for identification of nonlinear structure as well as damage.

The fundamental purpose of structures is to protect or

shield the occupants. However, while structures may be designed

adequately for the anticipated excitations many develop serious

structural damage due to unexpected severe loadings or deteriora-

tion from exposure to elements. As a consequence, the structure

may behave nonlinearly during excitation. Furthermores for most

cases the nonlinear behavior occurs even for undamaged status.

The nonlinearity must be characterized in order to predict the -

structural response.

Currently, the available techniques and theories for damage

diagnosis are (i) visual observation (ii) volumetric, such as

X-ray, radiography and magnetic field methods, (iii) dynamic me-

thods, such as the acoustic wave and modal theories. The first

two methods, visual and volumetric, are essentially local, thus

not applicable to hard-to-reach locations or to complex struc-

tures. Hence, they cannot be adapted to establish the safety and

reliability of a structure for future excitation. In other words,

the engineer cannot accurately estimate the reliability for the

damaged structure without an analytical theory to support a relia-

* bility analysis. The dynamic theories are based upon the measure-

ment of structural dynamics characteristics prior to and after
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the damage E192, or upon the recording of structural response dur-

ing a known strong excitation E13,16,17,213. The dynamic theories

are known to have uncertainties. A probabilistic theory is being

developed. The strong excitation diagnostic theory depends on an

accurate nonlinear system identification.

The material nonlinearity for most cases is characterized by

its forca deformation relationship. For example, the force-defor-

mation hysteretic curves for elasto-plastic, work-hardening,

strength degradation, or softening materials display different

shapes which may be displacement dependent. If the force-deforma-

tion relationship is known precisely, it Is possible that engin-

eers can predict the structural response with good accuracy.

The problem here is that can we know precisely the nonlinear

force-deformation behavior? For static case, the answer probably

is positive, since the static assumption excludes the frequency

dependent property. The material then may behave closely as

those obtained in lab tests. However, when transient analyses

are desired, many structures may or may not follow the rules

which are developed in accordance with the lab test. For such a

case, the difficulty is to measure the material restoring force

during extreme excitation when structure behaves nonlinearly.

In many cases, it is extremely difficult to measure the

structural hysteretic restoring force due to the environment

restriction. As a consequence, the predicted structural response,

using lab developed material model, doesn't correlated very well

with the measured response, such as acceleration. The present

paper, therefore, aims to establish an alternate approach to

characterize the nonlinear structural behavior. The established

material characteristic can be employed to define the

nonlinearity of the structure during a dynamic response, to model

the structural system behavior, and to predict the damage status

of the structure.
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9.1 Formulation of Structural Power Model:

The nonlinear system considered herein is of single-dgree-of-

freedom (SDF), shown in Figure 9.1, with the governing differen-

tial equation of motion

a z + c z * R(z) f(t), (9.1)

R(z) z

Fig. 9.1 The SDF System

where the mass (m) and the damping ratio (c) are deterministic,

f(t) is the random excitation, tz, z, z) are respectively the dis-

placement, velocity and acceleration responses of the system, R(z)

is the displacement-related nonlinear system hysteretic force. The

hysteretic restoring force is characterized by the materials,

which can be elasto-perfect plastic, work-hardening, or stiffness/

strength degradation E13917,213. The property of stiffness/

strength degradation, shown in Figure 9.2, is the typical behavior

of concrete structures subject to strong excitation. As a result,

the energy dissipates through the hysteretic loop. The energy

dissipation (u) is thus defined as:

Displacement (mm)

Fig. 9.2 Typical Behavior of System Degradation
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W Jz R) dt, (9.2)
J0

which represents the area under the hysteretic loop. It has been

demonstrated in E133 that the amount of energy dissipation can be

used as an indicator for the damage level, which is associate with

the diminishing of strength and stiffness of the structure. How-

ever, currently the amount of energy dissipation is very difficult

to measure, especially for a continuous structure. In view of

this problem, we introduce

q(t) - au/at, (9.3)

which represents the energy dissipation rate. Hence, the equation

of motion (9.1) becomes:

m z + c z + q(t)/z - f(t). (9.4)

Since q(t) represents the rate at which the energy is dissipated

through the hysteretic loop, it can be viewed as a structural

oower, which is an important characteristic of a structure. If

q(t) can be expressed in terms of measured responses, damage then

can be identified by using q(t) as a damage indicator. Therefore,

if we introduce the normalized kinetic energy (T), such that

T = z2/2, (9.5)

the equation of motion (9.4) is thus formulated ass

2cT + q(t) - f(t) z - a aT/at. (9.6)

The formulation (9.6) can be applied to the following problems:

(i) For an undamaged structure, the value of the structural

power can be identified by computing the velocity and a con-

trolled excitation. Such process constitutes the nonlinear

system identification.
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(it) For a damaged structure, the value of the structural pow-

er will diminish as compared to that of the undamaged struc-

ture. In order to assess the extent of damage, the value of

the structural power of a damaged structure must be determin-

ed. It can be done by using the process as discussed in (i).

(iii) If the velocity response is monitored during field

excitation, such as earthquake, the value of the structural

power can be estimated during the course of the excitation.

With the estimated value of q(t), the damage status at the

end of excitation can be readily enumerated.

9.2 Discussion of Structural Powers

The structural power, as defined in Sec. 2.0, is frequency de-

pendent. To demonstrate the characteristic of frequency dependen-

cy, the 0-hysteresis model, one of the proposed models for the be-

havior of stiffness/strength degradation, is adopted here to simu-

late the structural response. The excitation illustrated first is

a narrow band cosine wave random excitation:

f(t) - A cos (W.t+), (9.7)

where A is the amplitude, the phase angle 4 is a rabdom variable

with uniform distribution between 0 and 2w. When the system, as

in Figure 1, with the restoring force characteristic shown in Fig-

ure 9.3, is excited by the loading given by (9.7), the energy dis-

sipation is computed, for three different excitation frequencies

- 123, 61.5, 30.75 rad/sec, Figure 9.4. The figure shows that

the structural power, the slope of the energy curve, is constant

for a specific narrow band random excitation.
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R(Z) k

k k3 r/S

I k

Fig. 9.3 The 0-hysteresis Fig.9.4 Energy Dissipation for
Narrow-band Excitation

I To characterize the structural power of a system subjected to

wide band random excitation, the excitation will be expressed as:

fit) - E AZ os(w.t+4.) (9.6)
i--N i 1 i

i where At, iin-N,..,N, are constant, wi are the frequencies uniform-
ly distributed between the frequency spectrum range (-100, 000)Hz,

and the phase angles are random variables with uniform distribu-
tion between (0,2w). With the same structural system, the normal-

ized energy dissipation, which is defined as the energy dissipa-
tion from 0-hysteresis normalized by the quarter cycle energy dis-

sipation at failure, was computed for 50 different excitations, gi-
yen by the wide band excitation (9.9). The results are shown in
Figure 9.5, rom which, the structural power can be assumed as

constant with the following statisticsa

Eq(t)2 - 0.116 jEs A constant,

Standard deviation of q m 0.011 i/s.

ly Furthermore, in order to ilustrate the profile of the struc-
tural power vs the requency, the same structural system is excit-

ed by the excitation as given in (9.7), with frequency ranged from
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E.I'

i
a

1Ie( (SIC)

Fig.5 Energy Dissipation Sequence for wide-band Excitation

0.05 to 50 Hz. The results, shown in Figure 9.6, Illustrate that

the structural power (q) decreases as the excitation frequency in-

creases. The maximum value of q occurs when the excitation fre

quency is in the neighborhood of the natural frequency.

Finally, in order to demonstrate the influence of the ampli-

tude of the excitation on the structural powers the same structure

system is excited by a sequence of different amplitude loadings.

Figure 9.7 plots for 3 different frequencies (0.5, 1.0, 3.0 Hz)

the resulting structural power vs the excitation amplitudes normal-

ized by the yielding strength. It readily shows in Figure 9.7,
that as excitation amplitude rises the value of the structural

power also increases.

.- 3.0 Hz

1.0 Hz

0.5 Hz
O. 0,, , ,, . ,, .

O. al' 5i11. O.m I l.1

Forcing Frequency (r) Excitation Amplitude

Fig.9.6 Structural Power vs Fig.9.7 Structural Power vs
Excitation frequency Excitation Amplitude
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The technique of using structural power to assess the nonlin-

ear structure requires the measurement of the structural velocity

response which can be obtained by integrating the acceleration res-

ponse. Therefore, it can be applied to the damage assessment con-

veniently. It was demonstrated that, generally, the structural pow-

er possesses a constant value for a specific excitation, either

narrow or wide band. The characteristics of constant value can be

further assumed as a random variable if the excitation is random.

Such assumption simplifies the random analysis for structural res-

ponse. The application of using structural power in random vibra-

tion analysis is discussed in C233.
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